Application of Zinc Oxide
The applications of zinc oxide powder are numerous, and the principal ones are summarized below. Most applications exploit the reactivity of the oxide as a precursor to other zinc compounds. For material science applications, zinc oxide has high refractive index, high thermal conductivity, binding, antibacterial and UV-protection properties. Consequently, it is added into materials and products including plastics, ceramics, glass, cement, rubber, lubricants, paints, ointments, adhesive, sealants, concrete manufacturing, pigments, foods, batteries, ferrites, fire retardants, etc.
Rubber manufacture
Between 50% and 60% of ZnO use is in the rubber industry. Zinc oxide along with stearic acid is used in the vulcanization of rubber ZnO additive also protect rubber from fungi (see medical applications) and UV light.
Ceramic industry
Ceramic industry consumes a significant amount of zinc oxide, in particular in ceramic glaze and frit compositions. The relatively high heat capacity, thermal conductivity and high temperature stability of ZnO coupled with a comparatively low coefficient of expansion are desirable properties in the production of ceramics. ZnO affects the melting point and optical properties of the glazes, enamels, and ceramic formulations. Zinc oxide as a low expansion, secondary flux improves the elasticity of glazes by reducing the change in viscosity as a function of temperature and helps prevent crazing and shivering. By substituting ZnO for BaO and PbO, the heat capacity is decreased and the thermal conductivity is increased. Zinc in small amounts improves the development of glossy and brilliant surfaces. However, in moderate to high amounts, it produces matte and crystalline surfaces. With regard to color, zinc has a complicated influence.
Medicine
Zinc oxide as a mixture with about 0.5% iron(III) oxide (Fe2O3) is called calamine and is used in calamine lotion. Two minerals, zincite and hemimorphite, have been historically called calamine. When mixed with eugenol, a ligand, zinc oxide eugenol is formed, which has applications as a restorative and prosthodontic in dentistry.
Reflecting the basic properties of ZnO, fine particles of the oxide have deodorizing and antibacterial properties and for that reason are added into materials including cotton fabric, rubber, oral care products, and food packaging. Enhanced antibacterial action of fine particles compared to bulk material is not exclusive to ZnO and is observed for other materials, such as silver. This property results from the increased surface area of the fine particles.
Zinc oxide is widely used to treat a variety of skin conditions, including dermatitis, itching due to eczema, diaper rash and acne.
It is used in products such as baby powder and barrier creams to treat diaper rashes, calamine cream, anti-dandruff shampoos, and antiseptic ointments. It is also a component in tape (called "zinc oxide tape") used by athletes as a bandage to prevent soft tissue damage during workouts.
Zinc oxide can be used in ointments, creams, and lotions to protect against sunburn and other damage to the skin caused by ultraviolet light (see sunscreen). It is the broadest spectrum UVA and UVB absorber that is approved for use as a sunscreen by the U.S. Food and Drug Administration (FDA), and is completely photostable. When used as an ingredient in sunscreen, zinc oxide blocks both UVA (320–400 nm) and UVB (280–320 nm) rays of ultraviolet light. Zinc oxide and the other most common physical sunscreen, titanium dioxide, are considered to be nonirritating, nonallergenic, and non-comedogenic. Zinc from zinc oxide is, however, slightly absorbed into the skin.
Many sunscreens use nanoparticles of zinc oxide (along with nanoparticles of titanium dioxide) because such small particles do not scatter light and therefore do not appear white. There has been concern that they might be absorbed into the skin. A study published in 2010 found a 0.23% to 1.31% (mean 0.42%) of blood zinc levels in venous blood samples could be traced to zinc from ZnO nanoparticles applied to human skin for 5 days, and traces were also found in urine samples. In contrast, a comprehensive review of the medical literature from 2011 says that no evidence of systemic absorption can be found in the literature.
Zinc oxide nanoparticles can enhance the antibacterial activity of ciprofloxacin. It has been shown that nano ZnO that has an average size between 20 nm and 45 nm can enhance the antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli in vitro. The enhancing effect of this nanomaterial is concentration dependent against all test strains. This effect may be due to two reasons. First, zinc oxide nanoparticles can interfere with NorA protein, which is developed for conferring resistance in bacteria and has pumping activity that mediat